

JC-2017-49

16 August 2017

PRIIPs – Flow diagram for the risk and reward calculations in the PRIIPs KID

1. Introduction

The diagrams below set out the calculation steps for the Summary Risk Indicator (market risk and credit risk assessment) and Performance Scenario calculations described in Commission Delegated Regulation (EU) 2017/653.

They are being published as part of the Question and Answer (Q&A) material developed by the European Supervisory Authorities (ESAs) on the application of the requirements for the PRIIPs KID as practical convergence tools used to promote common supervisory approaches and practices in accordance with Article 29(2) of the ESA Regulations.

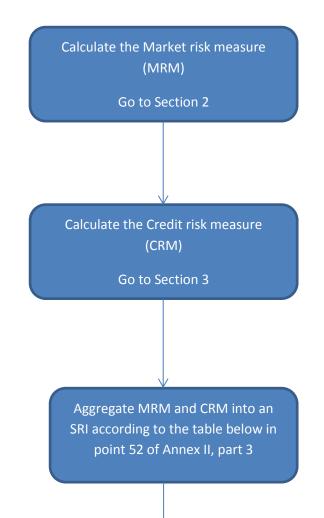
The diagrams are of a non-binding nature and do not constitute professional or legal advice. The legal requirements that need to be compiled with are those in Commission Delegated Regulation (EU) 2017/653 and not the text included in these diagrams. Please also be aware that the ESAs could adopt a formal position, which is different from the one expressed in this document.

All article references are to Commission Delegated Regulation (EU) 2017/653 unless otherwise stated.

The ESAs will review this document periodically or based on questions or comments from external stakeholders and updates are expected over time.

2. Table of Contents

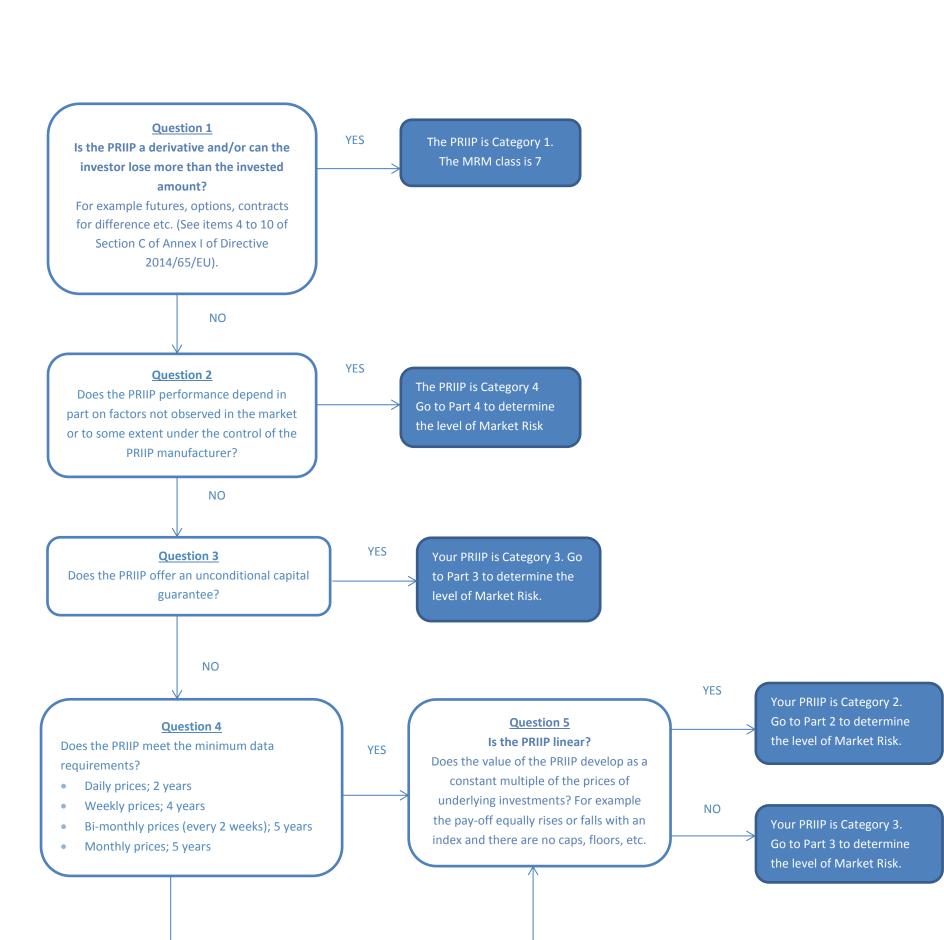
PRIIPs – Flow diagram for the risk and reward calculations in the PRIIPs KID	1
1. Introduction	1
2. Table of Contents	2
3. Acronyms used	3
4. Flow Diagrams	4
A. Summary Risk Indicator (SRI)	4
Section 1: Calculating the Summary Risk Indicator	4
Section 2: Market Risk Measure	5
Part 1: Determine the PRIIP Category to select the applicable methodology	5
Part 2: Category 2 (linear) PRIIPs	6
Calculation Example Category 2 PRIIPs	8
Part 3: Category 3 PRIIPs (non-linear products)	9
Calculation Example Category 3 PRIIPs	
Part 4: Category 4 PRIIPs	13
Section 3: Credit Risk Measure	14
Part 1: Should credit risk be assessed and if so how	14
Part 2 Assessment of credit risk	14
Part 3: Mitigating or escalating factors	17
B. Performance Scenarios	
Part 1: Determining the holding periods that need to be shown	
Part 2: Determining calculation amounts and applicable methodology	19
Part 3: Determining Performance Scenarios for Category 1 PRIIPs	20
Part 4: Determining Performance Scenarios for Category 2 PRIIPs	21
a) Performance calculations for the unfavourable, moderate and favourable scenarios	21
b) Performance calculations for the stress scenario	23
Part 5: Determining Performance Scenarios for Category 3 PRIIPs	25
a) Performance calculations for the unfavourable, moderate and favourable scenarios	25
b) Performance calculations for the stress scenario	29
Part 6: Calculating the performance scenarios for the intermediate periods	

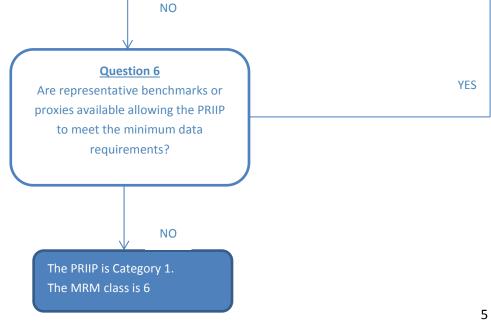

3. Acronyms used

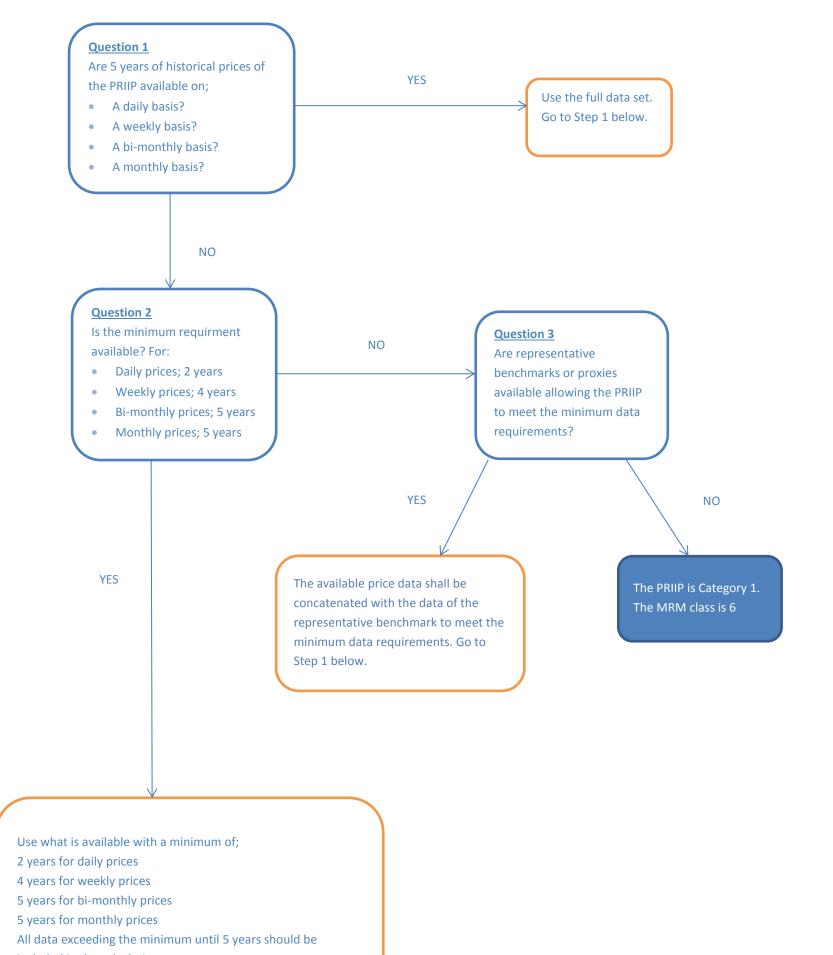
CQS	Credit Quality Step
CRM	Credit Risk Measure
ECAI	External Credit Assessment Institution
ESAs	European Supervisory Authorities
EXP	Exponential
KID	Key Information Document
MRM	Market Risk Measure
ОТС	Over The Counter
PCA	Principal Component Analysis
PRIIP	Package Retail and Insurance-based Investment Product
Q&A	Question and Answer
RHP	Recommended Holding Period
SRI	Summary Risk Indicator
VaR	Value-at-risk
VEV	VaR-Equivalent Volatility

4. Flow Diagrams

A. Summary Risk Indicator (SRI)


Section 1: Calculating the Summary Risk Indicator




CRM class	MR1	MR2	MR3	MR4	MR5	MR6	MR7
CR1	1	2	3	4	5	6	7
CR2	1	2	3	4	5	6	7
CR3	3	3	3	4	5	6	7
CR4	5	5	5	5	5	6	7
CR5	5	5	5	5	5	6	7
CR6	6	6	6	6	6	6	7

Section 2: Market Risk Measure

Part 1: Determine the PRIIP Category to select the applicable methodology

6

included in the calculation.

Step 1

To calculate the VaR Return Space using the Cornish Fisher expansion, you need the history of observed returns of the PRIIP. The returns are calculated by taking the natural logarithm of the price at the end of the current period divided by the price at the end of the previous period.

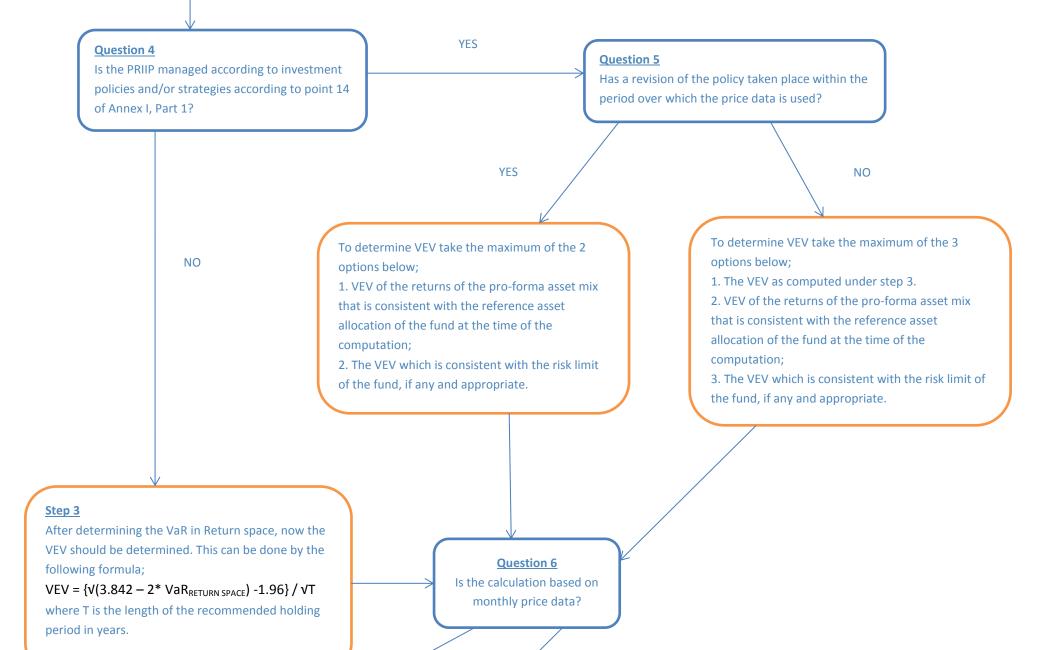
Zeroeth Moment (M₀): This is the number of observed returns.

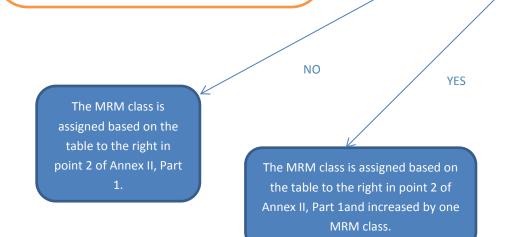
First Moment (M₁): This is the average of the observed returns.

Second Moment (M_2): This is the average of the square of each return less M_1 . It summarises the variance or width of the distribution of the returns.

The standard deviation (σ) is the square root of M_2 .

Third Moment (M₃): This is the average of the cube of each return less M_1 . It summarises the asymmetry or skewness of the distribution of the returns. **The skew (µ1)** is M_3 divided by the cube of the standard deviation.

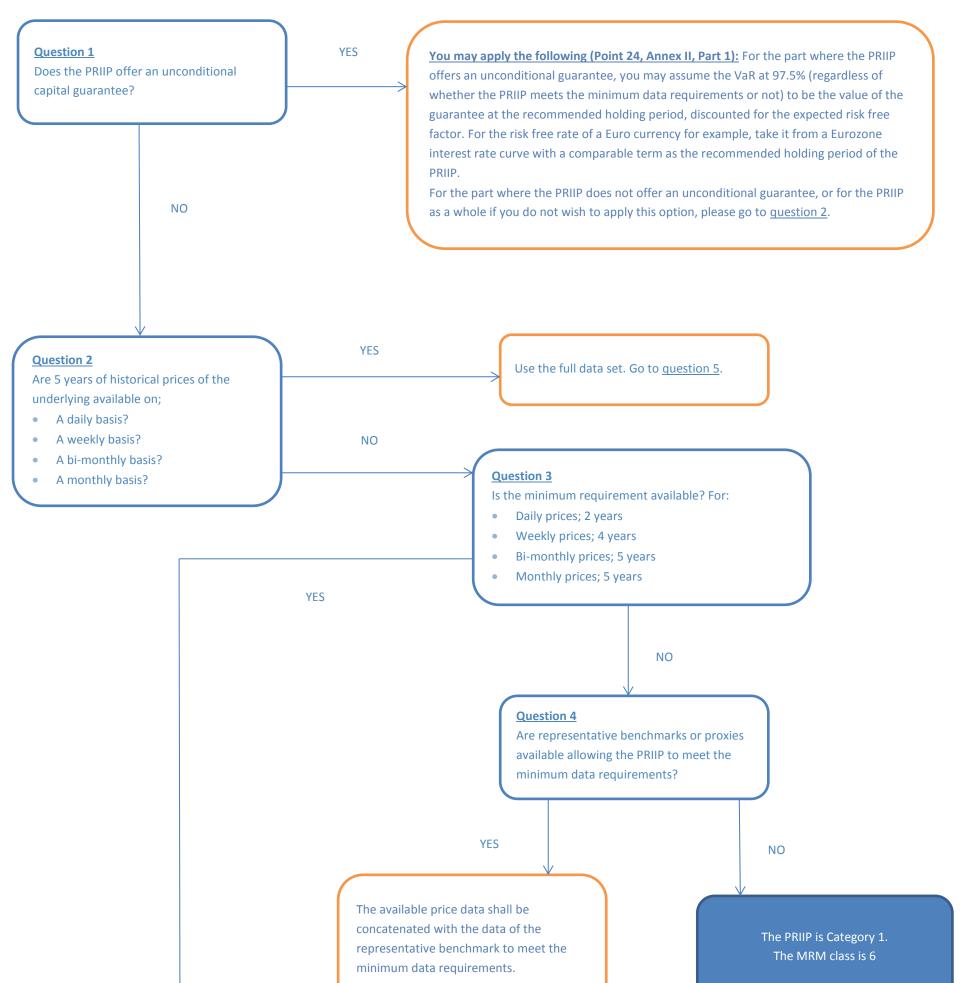

Fourth Moment (M_4): This is the average of the fourth power of each return less M_1 . It summarises the extent of wider tails or kurtosis of the distribution of the returns. The excess kurtosis (μ_2) is M_4 divided by the fourth power of the standard deviation less 3


Step 2

Now the formula can be applied to the data:

 $VaR_{RETURN SPACE} = \sigma VN * (-1,96 + 0,474 * \mu_1 / VN - 0,0687 * \mu_2 / N + 0,146 * \mu_1^2 / N) - 0,5\sigma^2N$

where N represents the number of trading periods in the recommended holding period

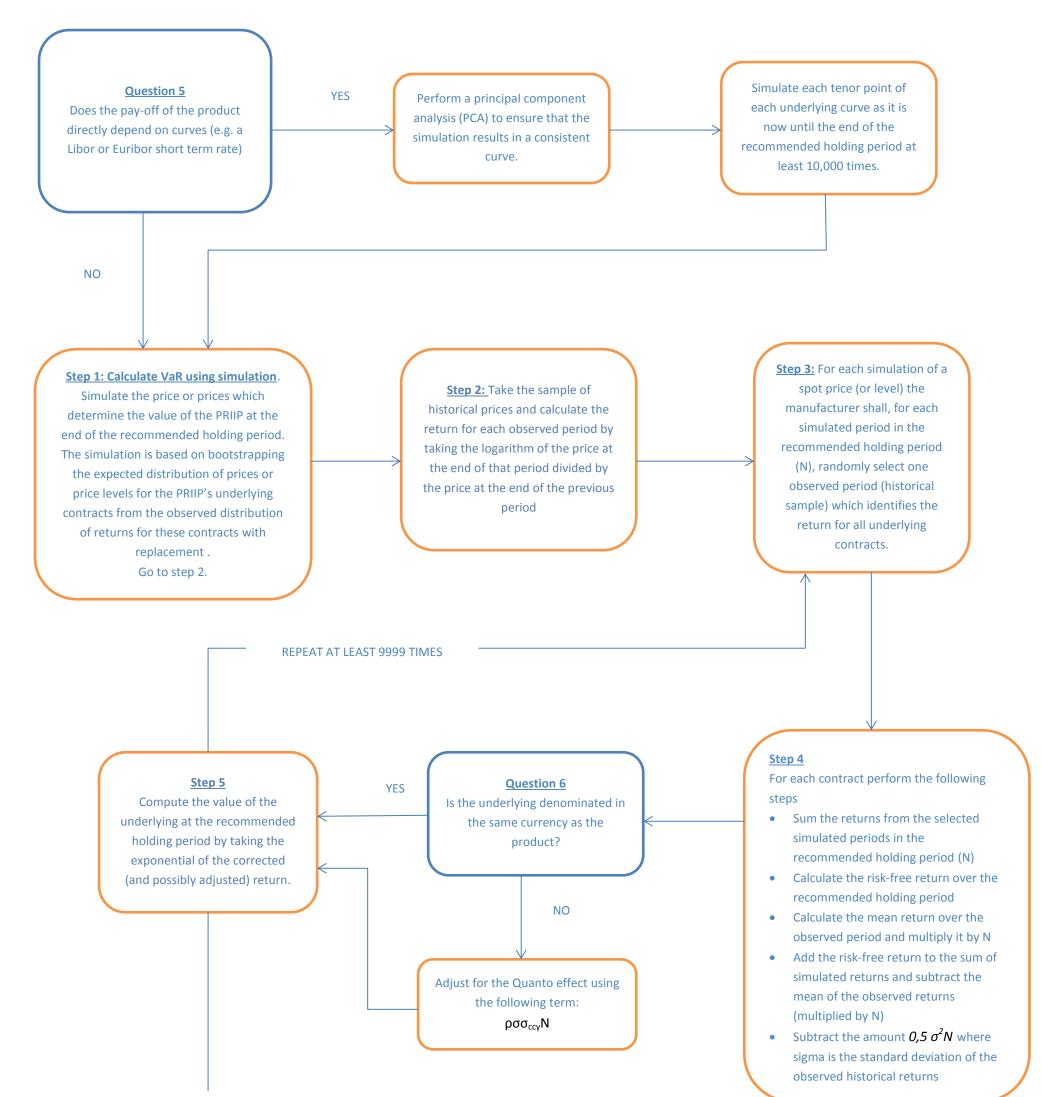


MRM class	Annualised volatility (VEV)
1	< 0,5 %
2	≥0,5 % and <5,0 %
3	≥5,0 % and <12 %
4	≥12 % and <20 %
5	≥20 % and <30 %
6	≥30 % and <80 %
7	≥80 %

Calculation Example Category 2 PRIIPs

Trading days per year	256	365 (number of days) – 104 (number of weekend days) – 5 (public	holidays) = 256 days		
M0 (under paragraph 10 of Annex II)	1280	Number of observations in the period 256*5=1280			
M1	0,0003389	Mean of all the observed returns in the sample (daily)			
M2	0,000149905 Seco	nd Moment $M_2 = \sum_{i} \frac{(r_i - M_1)^2}{M_0} = \sigma^2$	Volatility	0,012243	57 $\sigma = \sqrt{M_2}$
М3	-6,44479E-07 Third	Moment $M_3 = \sum_i (r_i - M_1)^3 / M_0$	Skew	-0,3511434	35 $\mu_1 = M_3 / M_2^{1,5}$
M4	1,46705E-07 Four	Homent $M_3 = \sum_i (r_i - M_1)^3 / M_0$ th Moment $M_4 = \sum_i (r_i - M_1)^4 / M_0$	Excess Kurtosis	3,5285033	83 $\mu_2 = (M_4/M_2^2) - 3$
Daily σ	0,01224357			$\sqrt{z_{\alpha}^2}$	$\frac{-2 * VaR_{Return Space} - z_{\sigma}}{\sqrt{T}}$
Confidence level	2,50%	Polynomial	Divisor	$VEV_{Return Space} = -$	\sqrt{T}
Z_{α}	-1,959963985	z^2-1	6		V I
Annualized Volatility (1Y) $\sigma\sqrt{N}$	19,59%	z^3-3z	24	72	$2 + \ln(UaD)$
$(z_{\alpha}^2-1)/6$	0,47357647	2z^3-5z	36	$VEV_{\text{Dation}} = \frac{\sqrt{2\alpha}}{2\alpha}$	$\frac{2 * \ln(VaR_{PriceSpace}) - z_{\alpha}}{\sqrt{T}}$
$(z_{\alpha}^{3}-3z_{\alpha})/24$	-0,068717874			· - · Price Space	\sqrt{T}
$(2z_{\alpha}^{^{}}3-5z_{\alpha})/36$	-0,146067276				
RHP (Recommended Holding Period expressed in years)	Number of Days	VaR (Return Space)	VEV Return Space	MRM class	VaR-equivalent volatility (VEV)
1	256	-0,4053	0,196	9 1	<0,5%
3	768	-0,7247	0,1964	4 2	0,5%-5,0%
5	1280	-0,9566	0,1963	3 3	5,0%-12%
10	2560	-1,4081	0,1962		12%-20%
20	5120	-2,1029	0,196	1 5	20%-30%
50	12800	-3,6764	0,196	<mark>0</mark> 6	30%-80%
				7	>80%

5 years of daily observed prices (Euro Stoxx 50 from 01.05.12 to 25.05.17)


Go to question 5.

9

Use what is available with a minimum of;

- 2 years for daily prices
- 4 years for weekly prices
- 5 years for bi-monthly prices
- 5 years for monthly prices

All data exceeding the minimum up to 5 years should be included in the calculation. Go to <u>question 5.</u>

AFTER 10,000 REPEATS

<u>Step 6</u> For each set of simulated curves and spot prices, compute the value of the product and sort the resulting 10,000 values. Go to <u>next box</u>.

Take the VaR_{PRICE SPACE} from these sorted values at the 97.5% interval or the 2.5% percentile of the distribution of the PRIIP's values and discount it to the present date using the expected risk-free discount factor.

<u>Step 7 - Calculate VEV and MRM Class</u> The VEV is given by:

$VEV = \{v(3.842 - 2* ln(VaR_{PRICE SPACE})) - 1.96\} / vT$

Where T is the length of the recommended holding period in years (Point 17, Annex II, Part 1).

Only in cases where the product is called or cancelled before the end of the recommended holding period according to the simulation, the period in years until the call or cancellation is used.

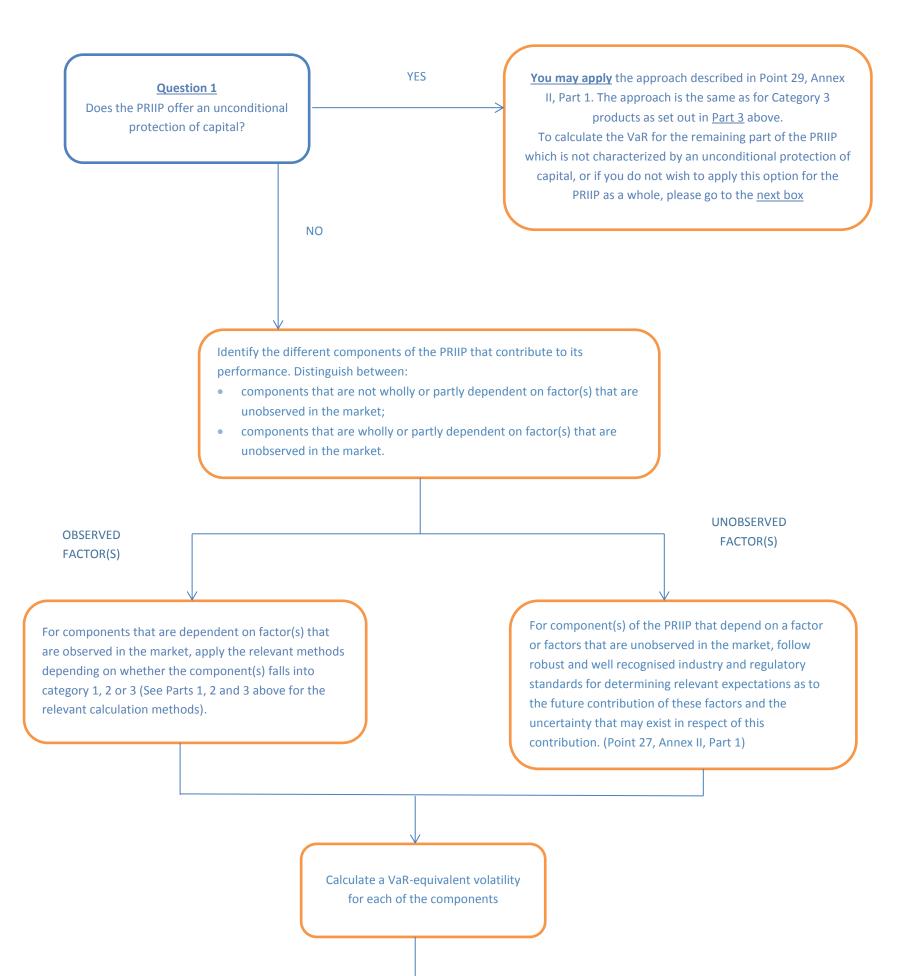
 Ouestion 8

 Us the calculation based on monthly price data?

 NO
 YES

 The MRM class is assigned based on the table below (Point 2, Annex II, Part 1).

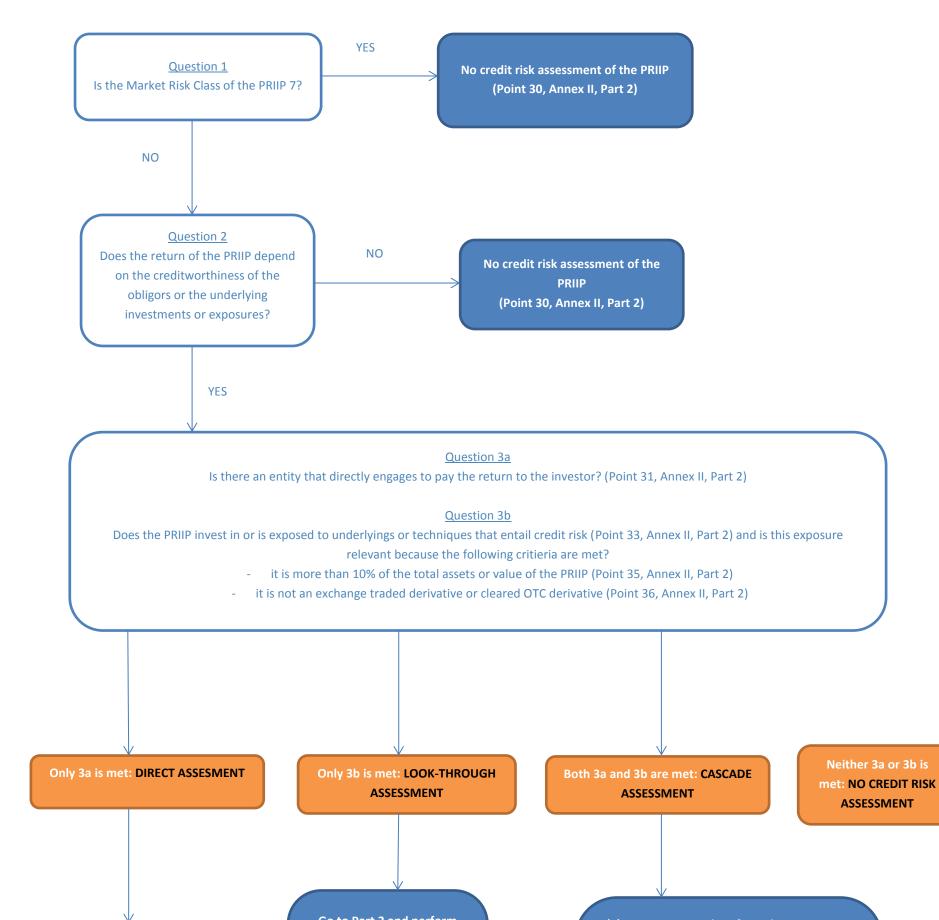
MRM class	Annualised volatility (VEV)
1	< 0,5 %
2	≥0,5 % and <5,0 %
3	≥5,0 % and <12 %
4	≥12 % and <20 %
5	≥20 % and <30 %
6	≥30 % and <80 %
7	≥80 %


Steps 1-6: 12 days RHP, 20 simulations, 1280 observed daily prices (5 years – Euro Stoxx 50 – from 01.05.12 to 28.04.17)

E	KAMPLE SIMULATION: SIMULATION 1		DISTRIBUTIO	ON OF SIMUL	ATIONS
EACH SIMULATED PERIOD IN THE RHP (RHP=12 DAYS)	RANDOMLY SELECT ONE OBSERVED PERIOD OVER 1280 PERIODS (5*256)	RETURN FOR ALL UNDERLYING CONTRACTS	SIMULATIONS	RANK	VALUE
	1 754	0,003144319	1	9	0,9784144
	2 247	0,000786848	2	1	1,05729999
	3 840	-0,034100705	3	15	0,9277006
	4 137	1,21011E-05	4	14	0,93097185
	5 117	0,012355476	5	12	0,94650357
	6 524	-0,000889222	6	6	0,99116702
	7 195	0,002623287	7	17	0,92026668
	8 138	0,000278285	8	8	0,97890466
	9 457	0,014583841	9	3	1,01099443
1	.0 717	0,001495982	10	2	1,01111948
1	.1 809	-0,01294047	11	5	0,99193409
1	.2 259	-0,00477314	12	19	0,91167231
			13	10	0,95711822
Return = E[Return]	$[n_{risk-neutral}] - E[Return_{measured}] - 0$	$,5\sigma^2 N - \rho\sigma\sigma_{ccy} N$	14	4	0,99512444
			15	18	0,91342991
E[Return _{risk-neut}	_{tral}] = Riskfree Return + Sum of simi	ılated returns	16	7	0,98975916
			17	20	0,90900029
RISK-FREE RETURN OVER THE RHP	0,000568027		18	11	0,94922686
SUM OF SIMULATED RETURNS	-0,017423398		19	13	0,93321018
E[RETURN risk-neutral]	-0,016855371		20	16	0,92273156
E [RETURN MEASURED]	0,004067173				
0,5 σ2 N	0,00089943				
ADJUSTED SIMULATED RETURN:	-0,021821974				
EXP of SIMULATED RETURN	0,978414403				
RHP LENGTH:	12 DAYS				

Step 7: RHP = 1 AND 3 YEARS, 1000 simulations, 1280 observed daily prices (5 years – Euro Stoxx 50 – from 01.05.12 to 28.04.17)

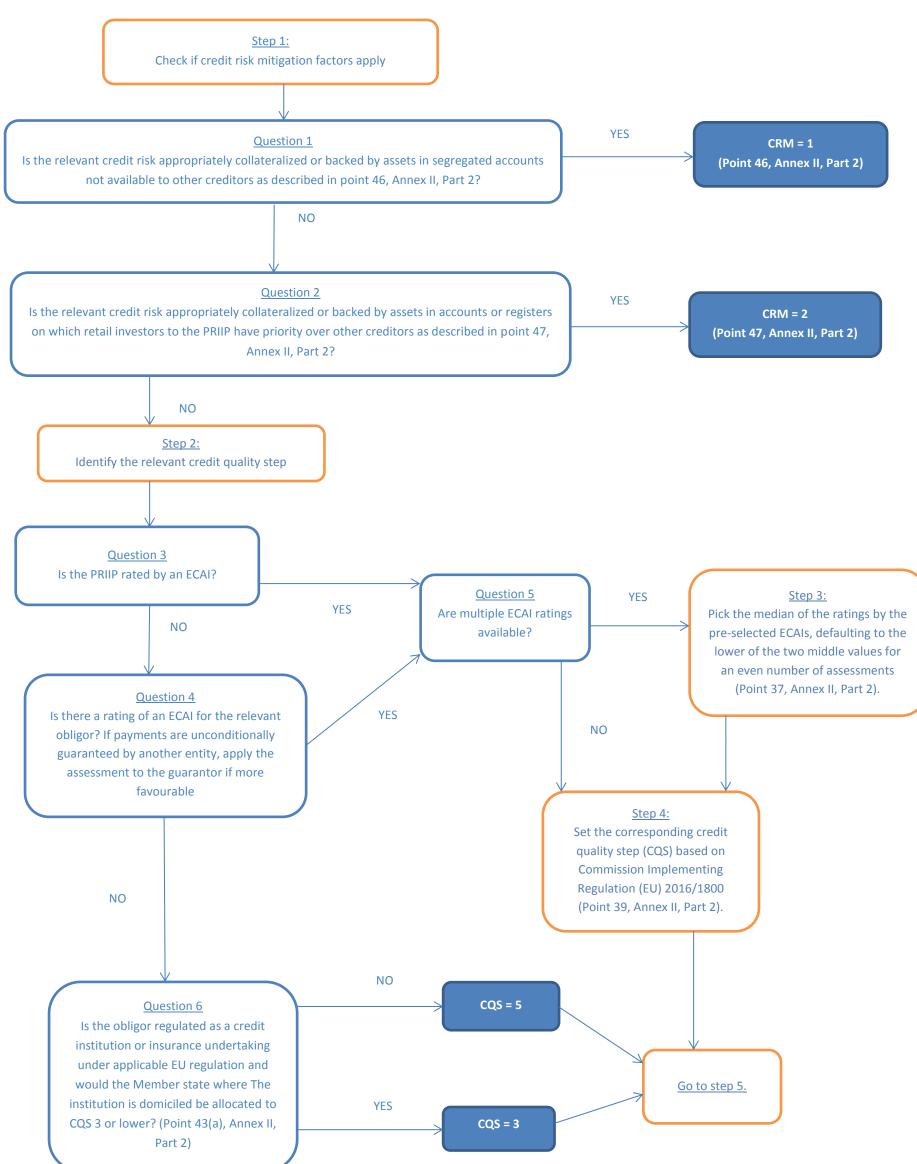
AVG RETURN (OBSERVED):	0,000338931	
DEV. STANDARD OF RETURNS (OBSERVED):	0,01224357	
DATA COUNT (5 years of daily prices):	1280	
RISK FREE RATE (%/yr):	1,2	
MRM PERCENTILE:	2,5	
TRADING DAYS PER YEAR:	256	
INV NORMAL:	-1,95996398	
USED RANK MRM:	975	


Recommended holding period expressed in	n years (T)	
YEARS	1	3
VaR (price space):	0,6832	0,4957
VEV:	0,1856	0,1907

Weight proportionally the VaR-equivalent volatility of each component of the PRIIP in order to get the overall VaRequivalent volatility of the PRIIP. When weighting the components, product features shall be taken into account. Where relevant, product algorithms mitigating the market risk as well as specificities of the with-profit component shall be considered. (Point 28, Annex II, Part 1).

Section 3: Credit Risk Measure

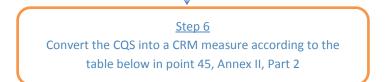
Part 1: Should credit risk be assessed and if so how


Go to Part 2 and perform the assessment of the credit risk of the PRIIP or obligor (s) (Point 31, Annex II, Part 2) Go to Part 2 and perform the assessment of the credit risk for each relevant underlying.

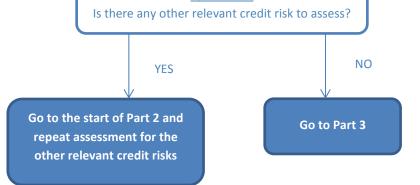
Then determine the weighted average credit quality step (Point 40, Annex II, Part 2) (1) Go to Part 2 and perform the assessment of the credit risk separately for the obligor(s) and each relevant underlying.

(2) Then determine the weighted average credit quality step of the underlyings (Point 40, Annex II, Part 2).

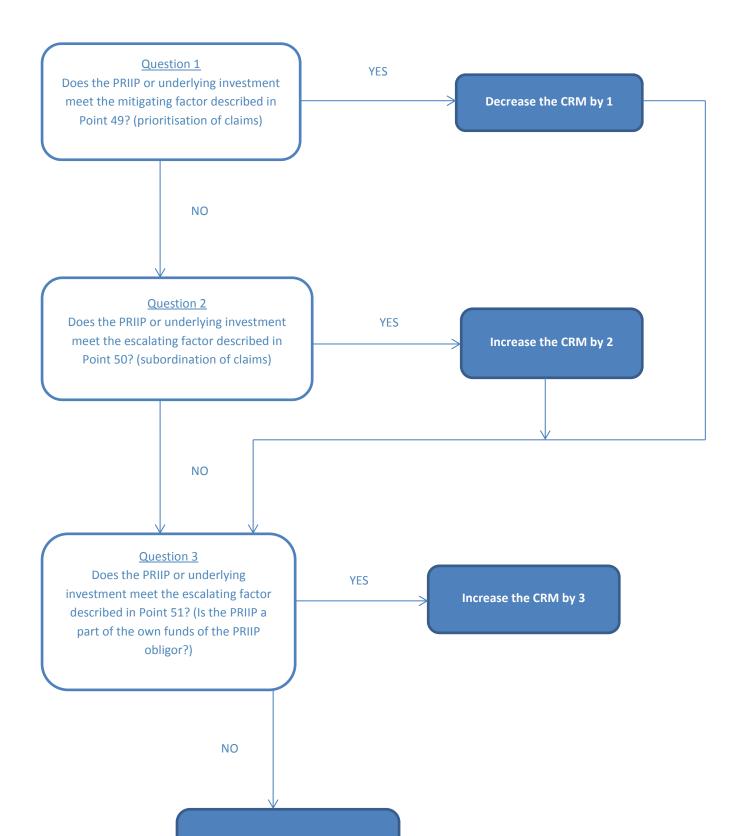
Then take the highest credit quality step from (1) and (2) above (point 41, Annex II, Part 2)


Part 2 Assessment of credit risk

Step 5: Allocation of credit assessment corresponding to the credit quality steps

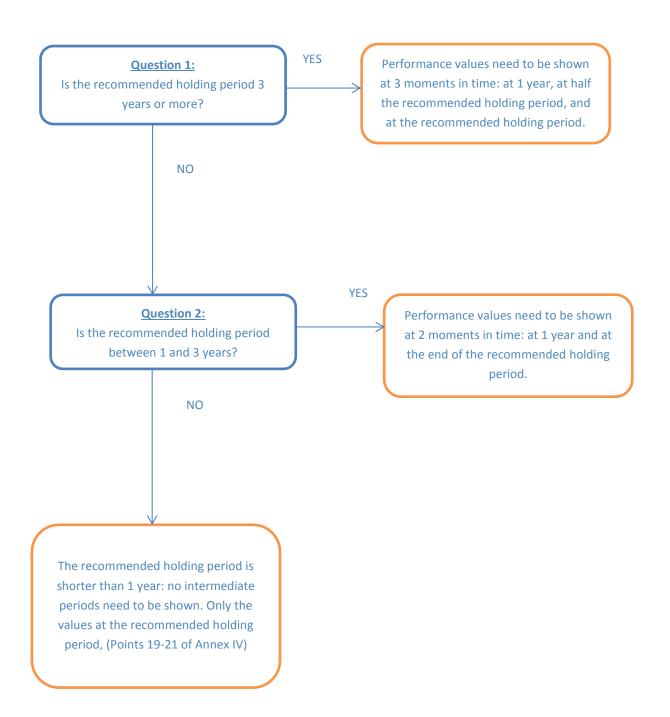

Adjust the CQS depending on the term of the PRIIP according to the table below in point 42, Annex II, Part 2 unless the credit assessment assigned reflects the term of the PRIIP.

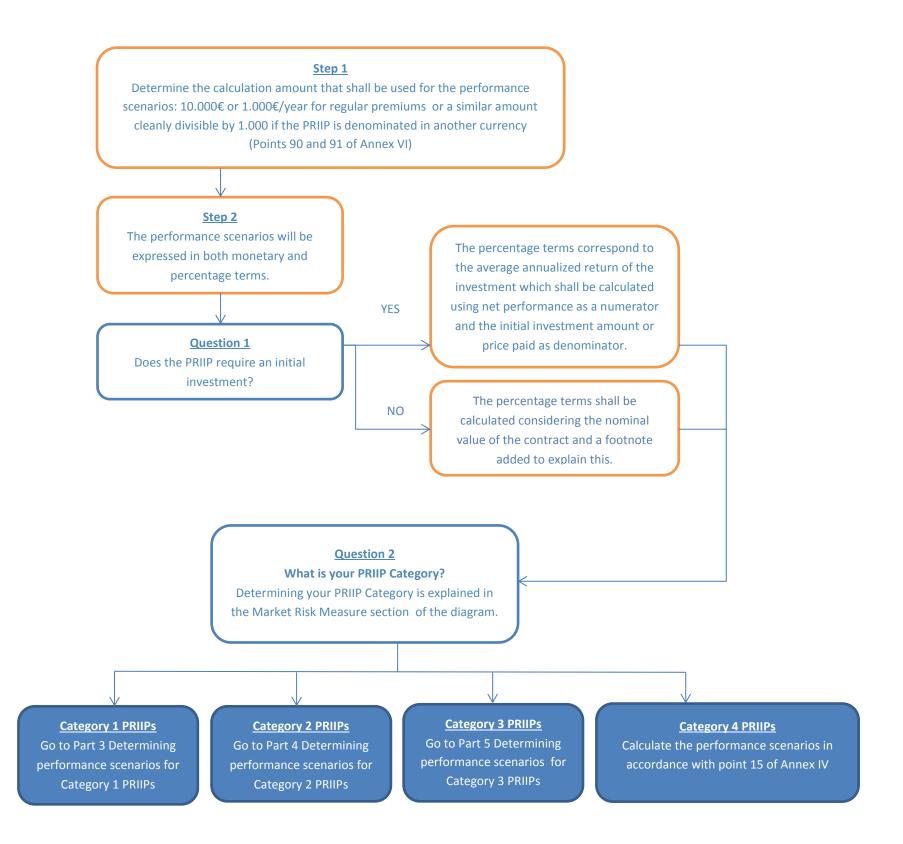
	V	/	
Credit quality step pursuant to point 38 of this Annex	Adjusted credit quality step, in the case where the maturity of the PRIIP, or its recommended holding period where a PRIIP does not have a maturity, is up to one year	Adjusted credit quality step, in the case where the maturity of the PRIIP, or its recommended holding period where a PRIIP does not have a maturity, ranges from one year up to twelve years	Adjusted credit quality step, in the case where the maturity of the PRIIP, or its recommended holding period where a PRIIP does not have a maturity, exceeds twelve years
0	0	0	0
1	1	1	1
2	1	2	2
3	2	3	3
4	3	4	5
5	4	5	6
6	6	6	6

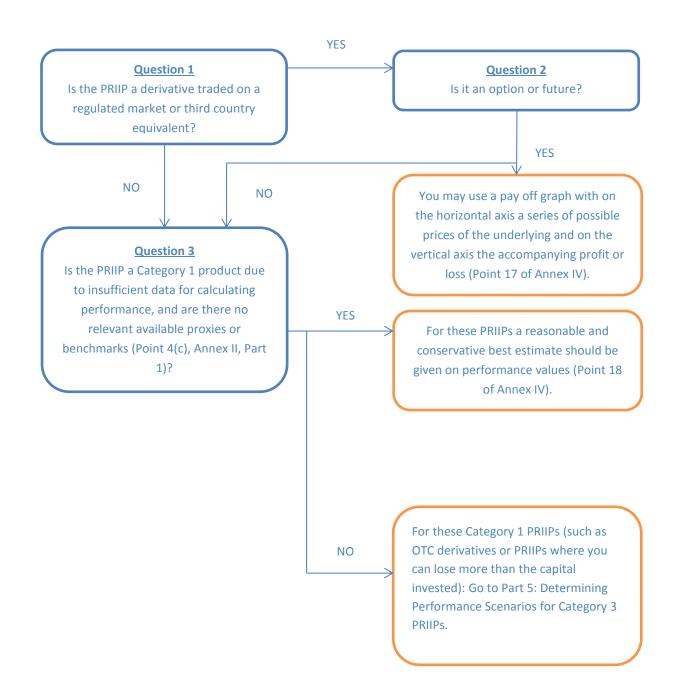


Adjusted credit quality step	Credit risk measure
0	1
1	1
2	2
3	3
4	4
5	5
6	6

Question 7:

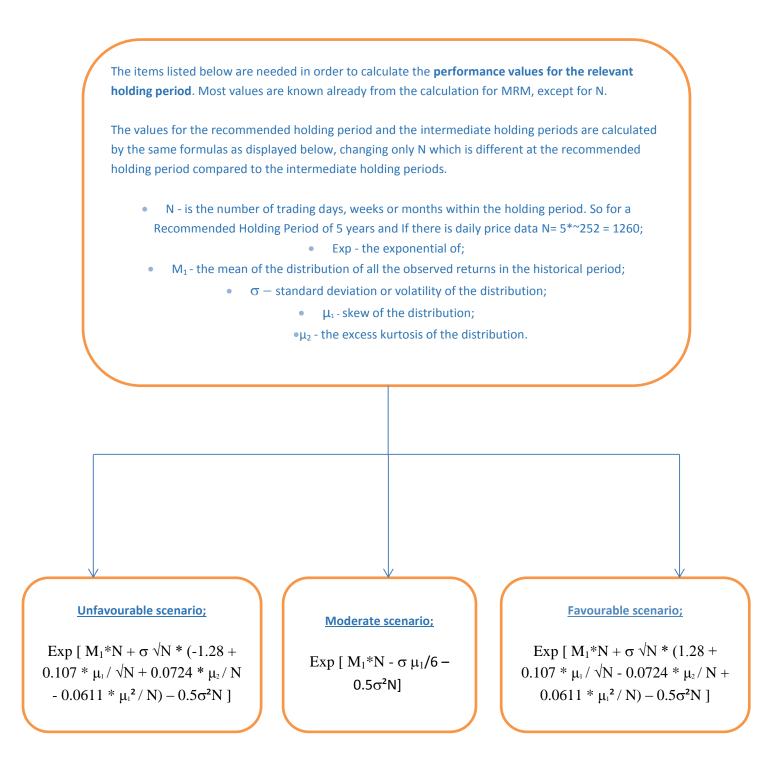

16



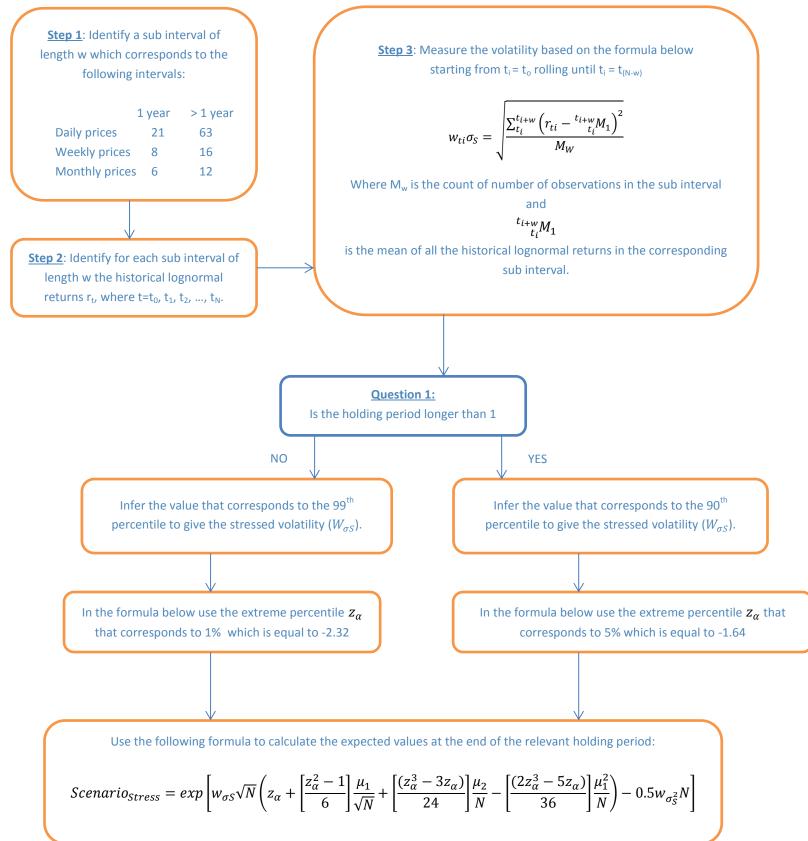

CRM is unchanged

B. Performance Scenarios

Part 1: Determining the holding periods that need to be shown



Part 4: Determining Performance Scenarios for Category 2 PRIIPs


a) Performance calculations for the unfavourable, moderate and favourable scenarios

Calculation Example Category 2 PRIIPs unfavourable, moderate and favourable scenarios

5 years of observed o	daily prices (Euro Stoxx 50 – fro	om 01.05.12 to 25.05.17), RHP 1, 3 and 5 years , exampl	es considering an investment a	amount of 1 €	
	α	Z_{α}	$(z_{\alpha}^2 - 1)/6$	$(z_{\alpha}^3 - 3z_{\alpha})/24$	$(2z_{\alpha}^3-5z_{\alpha})/36$
Unfavorable Scenario - Critical values	10%	-1,281551566	0,107062403	0,072494466	0,061060634
Moderate Scenario - Critical values	50%	0	-0,166666667	0	0
Favorable Scenario - Critical values	90%	1,281551566	0,107062403	-0,072494466	-0,061060634
		Standard Performance Scenarios Point 9 - letters (a), (b), (c) - Annex IV		RHP	
		RHP	5 years	1 year	3 years
N is the number of trading periods in the recommended h	nolding period		1280	256	768
$\sigma\sqrt{N}$			0,438039282	0,195897122	0,339303769
Unfavorable scenario			0,799432892	0,832148758	0,792589109
Moderate scenario			1,402994819	1,070681172	1,225626426
Favorable scenario			2,456450066	1,374349473	1,890801557

b) Performance calculations for the stress scenario

Calculation Example Category 2 PRIIPs stress scenario

RHP 1, 3 and 5 years, 5 years of daily observed prices (Euro Stoxx 50 – from 01.05.12 to 25.02.17)

		Stressed Performance Scenario		
	α	Zα	$(z_{\alpha}^2 - 1)/6$	$(z_{\alpha}^{3} -$
RHP 1 YEAR - Annex IV, point 11	1%	-2,326347874	0,735315739	-0,2
RHP OTHER HOLDING PERIODS - Annex IV, point 11	5%	-1,644853627	0,284257242	0,0
Stressed volatility 1 year - Annex IV, point 10(d)	0,025767278			
Stressed volatility 3 years - Annex IV, point 10(d)	0,017657123			
Stressed volatility 5 years - Annex IV, point 10(d)	0,017152366		5 years	
N is the number of trading periods in the recomme	1280			
$W_{\sigma_S}\sqrt{N}$			0,613661699	0,4
STRESSED SCENARIO			0,301389802	0,3

$a^{3}_{\alpha} - 3z_{\alpha})/24$ 0,233787728

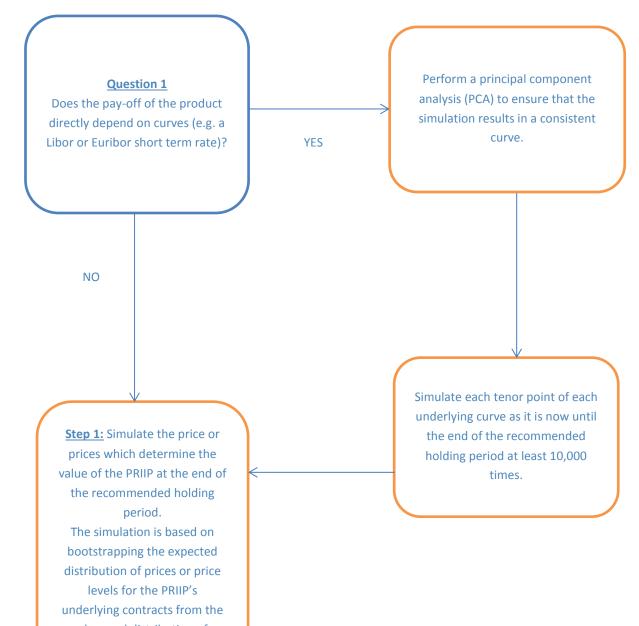
),020180747

RHP

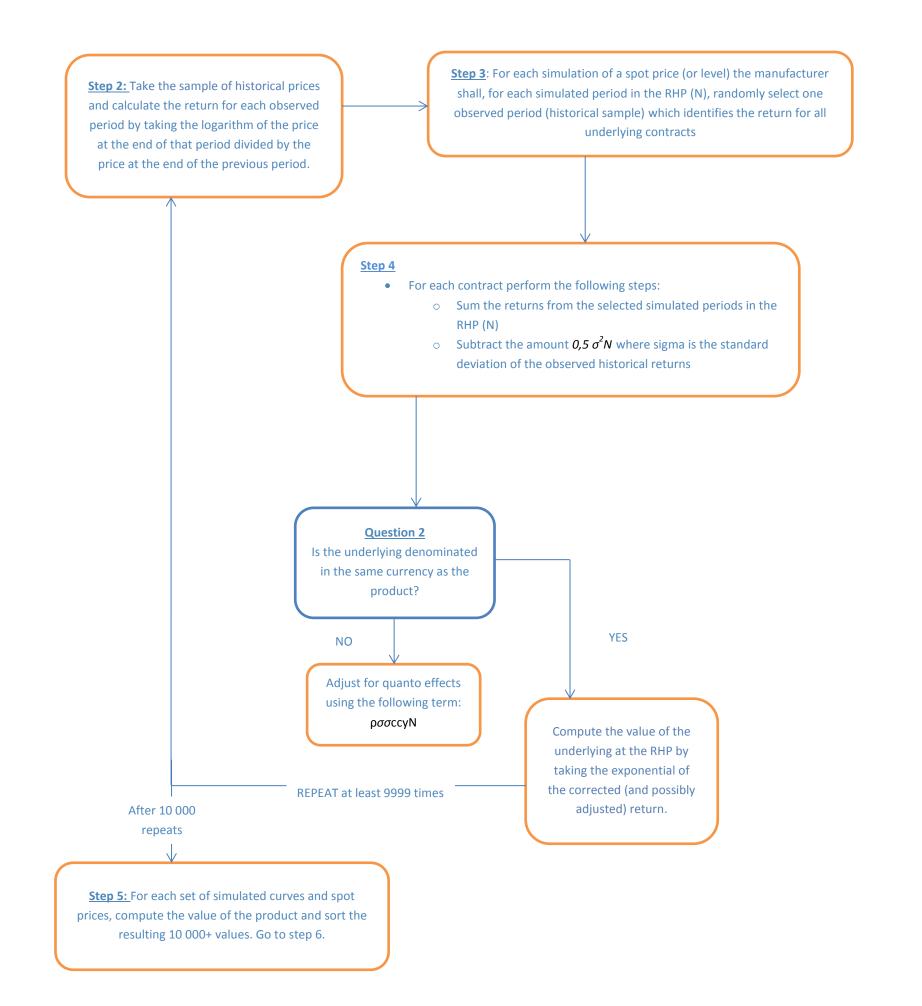
1 year 256

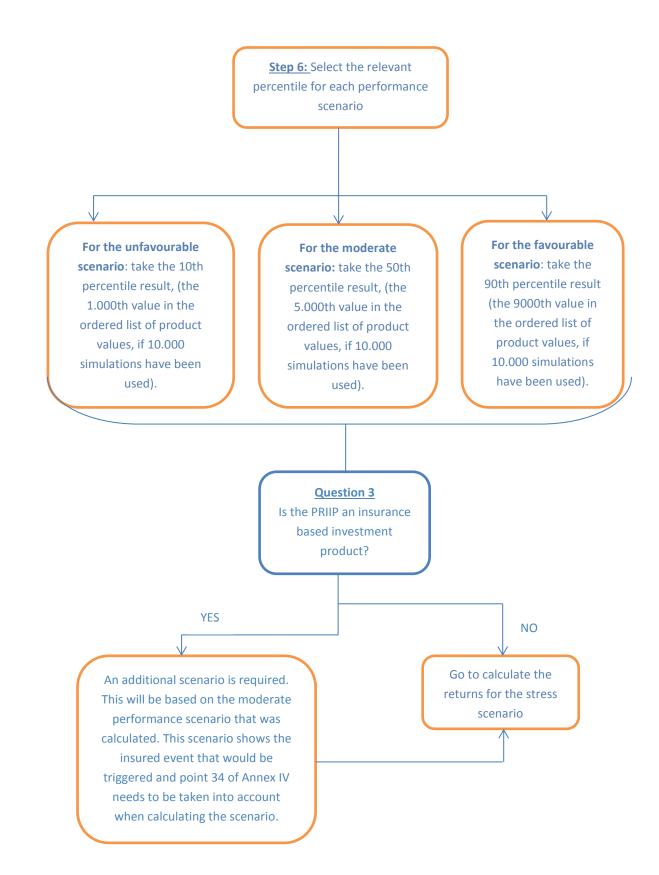
),412276441 **),349241623** $(2z_{\alpha}^{3} - 5z_{\alpha})/36$ -0,376337746 -0,018782716

3 years


768

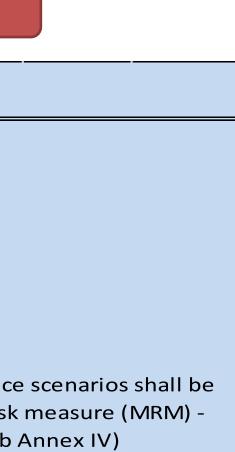
0,489328534 **0,396012057**

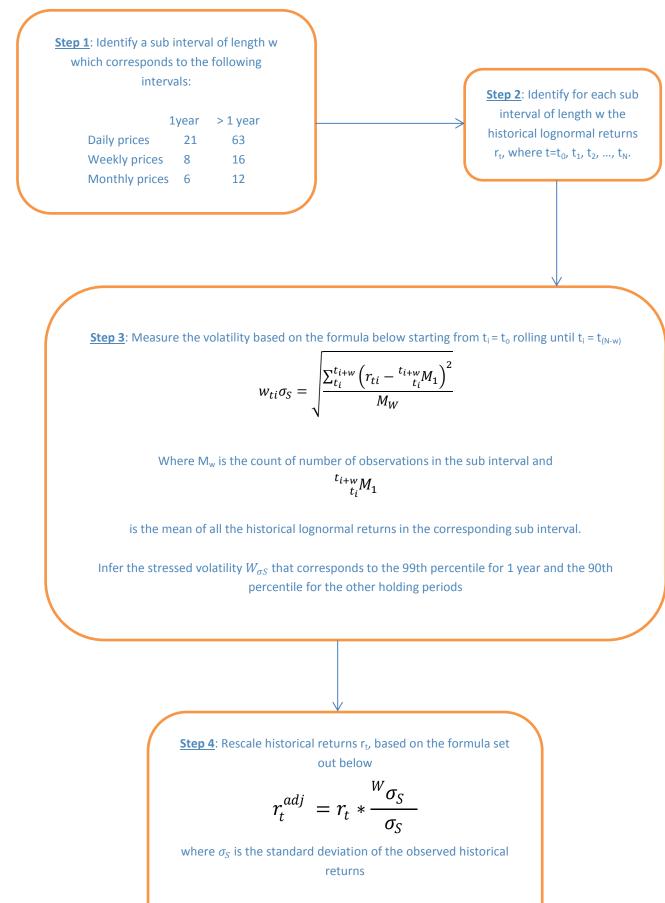

Part 5: Determining Performance Scenarios for Category 3 PRIIPs


Please note that the performance scenarios hinge on the same simulated data as the MRM calculations, hence manufacturers are not required to make a new simulation when switching from the MRM to the Performance Scenarios calculations. However, the complete process for the performance scenarios is described in this Part for the sake of clarity.

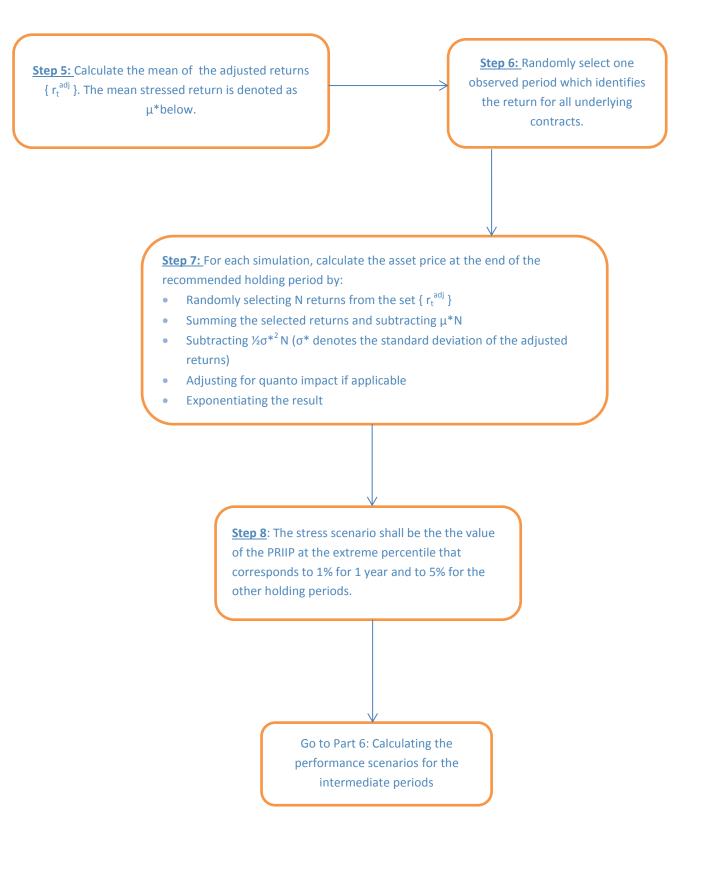
a) Performance calculations for the unfavourable, moderate and favourable scenarios

observed distribution of returns for these contracts with replacement. Go to step 2.




Calculation Example Category 3 PRIIPs unfavourable, moderate and favourable scenarios

1000 simulations, RHP 1 and 3 years, 5 years of daily observed prices (Euro Stoxx 50 from 01.05.12 to 28.04.17)


	Recommended holding period in years (T)						
				Percentile	Rank (over 1000 simulations)		
	Used Rank Unfavou	urable scena	nrio	10th	900		
	Used Rank Modera	te scenario		50th	500		
	Used Rank Favourable scenario			90th	100		
	YEARS	1	3				
Un	favorable Scenario	0,848537	0,780318	The scenarios	values under different performanc		
IV	Moderate Scenario 1,086382 1,23794				n a similar manner as the market risk		
Fa	vourable Scenario	1,39373	1,936616	Poin	t 4 Annex IV and Point 12 letter a, b		

b) Performance calculations for the stress scenario

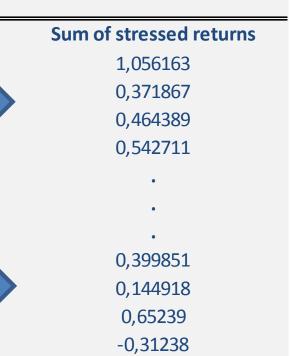
Go to step 5.

Steps 1-3: 1000 simulations, RHP of 2 years

i=t0 rolling until ti=t	Starting from ti		2003	NG PERIOD = N = 2 YEAR = 51 N=63 days		RECO
Rolling volatility		Ν	OBSERVED RETURNS		PRICE	DATE
	t_0				3632,94	04/05/2015
0,011821003	t_0 t_1	1	-0,024064118	r_1	3546,56	05/05/2015
0,010212764	t_2	2	0,003228901	r_1 r_2	3558,03	06/05/2015
0,010615001	t_3	3	-0,00051165	r_3	3556,21	07/05/2015
0,011073765	• 5	4	0,025889321		3649,48	08/05/2015
0,00829045		5	-0,006893175		3624,41	11/05/2015
0,00849749		6	-0,01425795		3573,1	12/05/2015
0,00737515		7	-0,005523046		3553,42	13/05/2015
0,007389004		8	0,013639802		3602,22	14/05/2015
0,012145054		9	-0,008125152		3573,07	15/05/2015
0,009510134		445	-0,002604259		3273,04	23/01/2017
0,009459426		446	0,009160707		3281,53	24/01/2017
0,009354546		447	-0,002328776		3326,15	25/01/2017
0,009401931		448	-0,002037409		3319,13	26/01/2017
0,009386922	$t_{T-w} = 512 - 63 = 449$	449	0,008093104	$r_{T-w} = 512 - 63 = 449$	3303,33	27/01/2017

rolling until ti=t(N-w)=512-63=449

olling volatility


Step 4: 1000 simulations, RHP of 2 years

DATE	Rank	Rolling volatility		Stressed return
/ /				
04/05/2015	38	0,010556603	Percentile RHP > 1	$r_{t}^{adj} = r_{t} * \frac{w_{\sigma S}}{\sigma S} -0.04568$
05/05/2015	57	0,009673011	95	σ _s -0,02817
06/05/2015	56	0,009676026		0,001279
07/05/2015	55	0,00967635	Inferred volatility (RHP > 1 year)	-0,00281
08/05/2015	50	0,009972533	0,018101868	0,015142
11/05/2015	49	0,01006383		0,018321
12/05/2015	45	0,010207575	$W_{\sigma S}$	-0,01762
13/05/2015	34	0,01152721		-0,01695
14/05/2015	32	0,012145054		0,016882
15/05/2015	31	0,012591142		-0,00417
18/05/2015	29	0,01293892		-0,01061
19/05/2015	30	0,012933856	Used rank (RHP > 1)	0,014619
20/05/2015	28	0,013087051	45	-0,02976
			Observed Standard Deviation	
			0,013630478	
25/04/2017		3583,16		0,021522
26/04/2017	•	3578,71		-0,00547
27/04/2017		3563,29		-0,00479
28/04/2017	r_{T-w}	3559,59		0,019014

irns

Steps 5-6: 1000 simulations, RHP of 2 years

				SIMULA	TED RETU	RNS IN TH	E RHP (RHP	=512 DAYS	= 2 YEARS)		
DAY	1	2	3		•		509	510	511	512	
Simulation 1	0,027392	0,014038	-0,2117				0,008783	0,01293	0,026752	0,01903	
Simulation 2	-0,00293	-0,01822	-0,01513				-0,00293	0,003203	-0,01623	-0,00621	
Simulation 3	0,015496	-0,001	-0,01035				0,029695	0,006496	-0,00374	0,011948	
Simulation 4	-0,02976	0,02458	0,011466				0,001153	0,026313	-0,01102	-0,00943	
	•							•			
•	•	•	•	•	•	•	•	•	•	•	
	•	•						•	•		
Simulation 997	0,038841	0,008783	-0,01705				-0,00612	0,029132	-0,03364	-0,00746	
Simulation 998	-0,01503	-0,00293	0,007265				0,024164	-0,03123	-0,02629	-0,00383	
Simulation 999	-0,01903	0,029695	0,007654				-0,00612	0,02476	0,006858	0,054131	
Simulation 1000	0,017111	0,001153	-0,00915				-0,00374	0,011466	0,029465	-0,00612	

Steps 7-8: 1000 simulations, RHP of 2 years

	Sum of stressed r	eturns	Simulated stressed returns	Rank	Simulated stressed prices
Simulation 1	0,547871	<i>r</i> ,	-0,308473702	716	0,734567
Simulation 2	0,23742	$E[Return_{MEASURED}] = N\mu^*$	0,036099698	380	1,036759
Simulation 3	0,11592	0,376425586	0,209019028	236	1,232468
Simulation 4	0,526658		-0,145282546	570	0,864778
Simulation 5	0,388818		0,500883786	68	1,650179
				•	
Simulation 997	0,423087		-0,057786731	512	0,943851
Simulation 998	0,26424		-0,046921846	500	0,954162
Simulation 999	0,030446		0,222387303	251	1,249055
Simulation 1000	-0,20313		-0,66079576	904	0,51644

	7

	Percentile stressed scenario	Rank Stressed Scenario
	Z_{lpha}	
RHP = 2 Y (512 days)	5	950

Stressed Scenario

0,488090936

Question 1

Does the PRIIP only reference or invest in one underlying, and is the PRIIP's value a monotone function of this underlying price (i.e. when the underlying price increases, the PRIIP's value is either always non-decreasing, or always nonincreasing)?

This means that the PRIIP includes several underlying investments or exposures and point 24(c) of Annex IV applies. To produce the favourable, moderate, unfavourable and stress scenarios at each intermediate date, pick underlying simulations consistent with (but not necessarily equal to) the corresponding percentiles of the PRIIP's values and use them as seed values for a simulation to dertermine the value of he PRIIP at the end of the period.

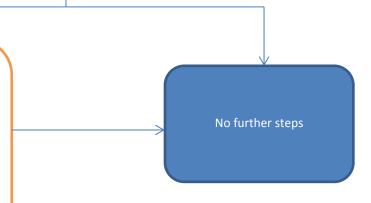
NO

To produce the scenarios at each intermediate date, pick 4 underlying simulations used for the calculation of performance scenarios as follows (Point 24 (a) and (b) of Annex IV).

YES

For the **unfavourable** scenario: Pick the simulation leading to (or that is consistent with) the **10th percentile** from the scenarios at the recommended holding period and calculate potential return of the PRIIP at the end of each intermediate period consistent with that simulation.

For the **moderate** scenario: Pick the simulation leading to (or that is consistent with) the **50th percentile** from the scenarios at the RHP and calculate potential return of the PRIIP at the end of each intermediate period consistent with that simulation. For the **favourable** scenario: Pick the simulation leading to (or that is consistent with) the **90th percentile** from the scenarios at the RHP. and calculate potential return of the PRIIP at the end of each intermediate period consistent with that simulation.


For the stress scenario:

Pick the simulation leading to (or that is consistent with) the percentile that corresponds to **1% for the 1 year intermediate holding period and to 5% for other holding periods** from the scenarios at the RHP and calculate potential return of the PRIIP at the end of each intermediate period consistent with that simulation.

Question 4 Is the PRIIP an insurance based investment product?

An additional scenario is required. This will be based on the moderate performance scenario that was calculated. This scenario shows the insured event that would be triggerd and point 34 of Annex IV needs to be taken into account when calculating the scenario.

YES

NO